Tempered D-modules and Borel–Moore homology vanishing

نویسندگان

چکیده

We characterize the tempered part of automorphic Langlands category D-mod(Bun_G) using geometry big cell in affine Grassmannian. deduce that, for $G$ non-abelian, D-modules have no de Rham cohomology with compact supports. The latter fact boils down to a concrete statement, which we prove Ran space and some explicit t-structure estimates: non-abelian $\Sigma$ smooth curve, Borel-Moore homology indscheme $Maps(\Sigma,G)$ vanishes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE VANISHING OF DERIVED LOCAL HOMOLOGY MODULES

Let $R$ be a commutative Noetherian ring, $fa$ anideal of $R$ and $mathcal{D}(R)$ denote the derived category of$R$-modules. For any homologically bounded complex $X$, we conjecture that$sup {bf L}Lambda^{fa}(X)leq$ mag$_RX$. We prove thisin several cases. This generalize the main result of Hatamkhani and Divaani-Aazar cite{HD} for complexes.

متن کامل

On Vanishing of Generalized Local Homology Modules and Its Duality

In this paper we study the vanishing and non-vanishing of generalized local cohomology and generalized local homology. In particular for a Noetherian local ring (R,m) and two non-zero finitely generated R-modules M and N , it is shown that H m (M,N) 6= 0.

متن کامل

On the Vanishing of Homology with Modules of Finite Length

We study the vanishing of homology and cohomology of a module of finite complete intersection dimension over a local ring. Given such a module of complexity c, we show that if c (co)homology groups with a module of finite length vanish, then all higher (co)homology groups vanish.

متن کامل

Relative (co)homology of $F$-Gorenstein modules

We investigate the relative cohomology and relative homology theories of $F$-Gorenstein modules, consider the relations between classical and $F$-Gorenstein (co)homology theories.

متن کامل

Generalized Local Homology Modules of Complexes

The theory of local homology modules was initiated by Matlis in 1974. It is a dual version of the theory of local cohomology modules. Mohammadi and Divaani-Aazar (2012) studied the connection between local homology and Gorenstein flat modules by using Gorenstein flat resolutions. In this paper, we introduce generalized local homology modules for complexes and we give several ways for computing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Inventiones Mathematicae

سال: 2021

ISSN: ['0020-9910', '1432-1297']

DOI: https://doi.org/10.1007/s00222-021-01036-2